Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38657181

RESUMO

Due to their unique afterglow ability, long-wavelength-light rechargeable persistent luminescence (PersL) nanoparticles (PLNPs) have been emerging as an important category of imaging probes. Among them, ZnGa2O4:0.6% Cr3+ (ZGC) PLNPs have gained widespread recognition due to the ease of synthesis and uniform morphology. Unfortunately, the limited absorption arising from the low molar extinction coefficient of Cr3+ results in relatively low afterglow intensity and rapid decay after long-wavelength LED light irradiation. Herein, we discovered a strategy that boosting dye-sensitization performance was able to effectively amplify the PersL signal under white LED light. Specifically, Dil served as a highly efficient sensitizer for Cr3+, promoting the absorption of the excitation light. By adjusting the Pr dopant concentrations, ZGCP0.5 PLNPs with optimal trap densities were obtained, which showed the highest PersL intensity and dye-sensitized performance. Strikingly, ZGCP0.5-Dil PLNPs exhibited a 24.3-fold enhancement in intensity and a 2-fold prolongation of decay time over bare ZGC PLNPs through the synergy effect of optimal electron traps and dye sensitization. Photostable ZGCP0.5-Dil PLNPs enabled imaging of the HepG2 tumor and effectively guided tumor surgical resection verified by the H&E staining analysis. This strategy could be a significant reference in other dye-sensitization PLNPs to enhance longer-wavelength rechargeable PersL.

2.
ACS Appl Mater Interfaces ; 15(48): 55323-55334, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37988696

RESUMO

Noble metal compositing is a promising method to enhance radiance intensity of persistent luminescent (PersL) nanoparticles (NPs) via surface plasmon resonance (SPR) for better tumor imaging, but it rarely unites with the pH-response strategy due to the challenge of realizing rigorous pH-responsive spatial distance control as a "button switch" of SPR. Here, ZnGa2O4:Cr3+ (ZGC) NPs as "pomegranate seeds" are cladded with sodium alginate to form nanoclusters (ZGC-SA), subsequently coated with carboxyl-rich polymers to acquire "pomegranate rind" (ZSPB) and finally decorated with 10 nm gold NPs (AuNPs) on the surface to obtain nanopomegranate structure (ZSPB@AuNPs). Though without deliberate distance control, there are plenty of "seeds" inside ZSPB@AuNPs fortunately at appropriate positions, which could be plasmon-enhanced by AuNPs. Furthermore, triggered by carboxyl protonation in subacid tumor, ZSPB@AuNPs aggregate and subsequently facilitate such plasmon enhancement effect, resulting in 4.4-fold PersL promotion at pH 5.5 (tumor microenvironment, TME) over pH 7.4 and in a maximum "tumor to normal tissue ratio" of PersL imaging signals of 125.9. Under surgical navigation of ZSPB@AuNPs, intramuscular tumors of mice could be resected without residue signals left. This nanopomegranate achieves TME pH-responsive plasmon-enhanced PersL for the first time and broadens the way for designing plasmon-enhanced PersL nanosystems.


Assuntos
Nanopartículas Metálicas , Neoplasias , Animais , Camundongos , Nanopartículas Metálicas/química , Ouro/química , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Ressonância de Plasmônio de Superfície , Concentração de Íons de Hidrogênio , Microambiente Tumoral
3.
ACS Appl Mater Interfaces ; 14(26): 29639-29649, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35749729

RESUMO

Allergic rhinitis (AR) is a chronic inflammatory reaction by immunoglobulin E (IgE) mediators after individual contact with allergens. It affects 10-40% of the world's population and reduces the quality of life. Long-term symptoms of rhinitis can cause inflammation to spread and trigger asthma, which can harm human health. Herein, we develop a Smart PeptIde defeNse (SPIN) web technique, which in situ constructs a peptide web, trapping IgE against AR. Two candidate SPINs, SPIN-1 and SPIN-2, are designed with different IgE-binding sequences. The SPIN-1 or SPIN-2 is able to bind to IgE and transform from nanoparticles into entangled nanofibers. In turn, the web of SPIN-1 or SPIN-2 acts as a long-term trap of IgE to prevent the IgE from binding to mast cells. SPIN-1 or SPIN-2 (10 mg/kg) is able to treat AR model Balb/c mice with high efficiency and reduced symptoms of rhinitis and inflammatory factors, even better than a first-line clinical drug, cetirizine (10 mg/kg). For example, the amount of IL-4 released in the AR group (185.5 ± 6.8 pg/mL) is significantly reduced after the treatment with SPIN-1 (70.4 ± 14.1 pg/mL), SPIN-2 (86.0 ± 9.3 pg/mL), or cetirizine (112.8 ± 19.3 pg/mL). More importantly, compared with the cetirizine group (1 day), the SPIN-1 or SPIN-2 group shows long-term therapeutic effects (1 week). The SPIN web technique shows the great potential for blocking IgE binding to mast cells in vivo, attenuating AR or other allergic reactions.


Assuntos
Rinite Alérgica , Rinite , Animais , Cetirizina/uso terapêutico , Imunoglobulina E/uso terapêutico , Camundongos , Peptídeos/uso terapêutico , Qualidade de Vida , Rinite Alérgica/tratamento farmacológico
4.
Nano Lett ; 21(14): 6202-6210, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34259530

RESUMO

Life is recognized as a sophisticated self-assembling material system. Cancer involves the overexpression and improper self-assembly of proteins, such as cytoskeleton protein vimentin, an emerging target related to tumor metastasis. Herein, we design a binding-induced fibrillogenesis (BIF) peptide that in situ forms fibrous networks, blocking the improper self-assembly of vimentin against cancer. The BIF peptide can bind to vimentin and subsequently perform fibrillogenesis to form fibers on vimentin. The resultant peptide fibrous network blocks vimentin skeletonization and inhibits the migration and invasion of tumor cells. In mouse models of tumor metastasis, the volume of tumor and the number of lung metastases are markedly decreased. Moreover, the efficacy of BIF peptide (5 mg/kg) is much higher than small molecular antimetastasis drug withaferin A (5 mg/kg) as a standard, indicating that the BIF peptide shows advantages over small molecular inhibitors in blocking the intracellular protein self-assembly.


Assuntos
Neoplasias da Mama , Animais , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Movimento Celular , Feminino , Humanos , Camundongos , Peptídeos , Vimentina/genética
5.
Chem Commun (Camb) ; 57(18): 2245-2248, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33554229

RESUMO

A novel peptide nanodrug composed of three functional motifs, bis(pyrene), FFVLK and CREKA, was used as a two-photon excited photosensitizer for precise photodynamic therapy (PDT). The system presented excellent two-photon imaging ability, tumor target effect and high reactive oxygen species productivity for improving treatment precision and efficiency in PDT.


Assuntos
Nanopartículas/administração & dosagem , Neoplasias/tratamento farmacológico , Peptídeos/farmacologia , Fotoquimioterapia/métodos , Fótons , Fármacos Fotossensibilizantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Linhagem Celular Tumoral , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Nanopartículas/química , Neoplasias/metabolismo , Neoplasias/patologia , Peptídeos/química , Fármacos Fotossensibilizantes/química , Pirenos/química
6.
Biomater Sci ; 8(22): 6175-6189, 2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33026364

RESUMO

Peptides have shown great potential in cancer treatment due to their good biocompatibility and low toxicity. However, the bioavailability and adverse immune response of peptides limit their further translation from bench to bedside. Over the past few decades, various peptide-based nanomaterials have been developed for drug delivery and cancer treatment. Compared with therapeutic peptides alone, self-assembled peptide nanomaterials have obvious advantages, such as improved stability and biodistribution for high-performance cancer therapy. In this review, we have described the synthesis, self-assembly and the anti-cancer application of therapeutic peptides and their conjugates, particularly polymer-peptide conjugates (PPCs).


Assuntos
Nanoestruturas , Neoplasias , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Peptídeos , Polímeros , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...